Study guide for DPM soil test section

Exam format

The exam will consist of three sections, each worth about 1/3 of the grade (see below).

- Multiple choice questions on key concepts of soil science and soil fertility
 - The availability of which nutrient increases with increasing pH?
 - Which soil order is known for its shrink-swell clays?
 - A fertilizer label indicates 12-12-12; what is the content of N-P-K?
- Short answers
 - Describe the benefits of SOM on soil physics, water movement, and nutrient cycling
 - Describe why the leaching potential varies among KCl, K₂SO₄ and K₃PO₄? What soil properties might influence the leaching potential of these fertilizers?
- Case studies
 - As an extension agent, you must prepare a fact sheet on N fertilization. Compare the use of synthetic N fertilizers to organic amendments in terms of energy costs, N:P ratio, and N availability to crops.
 - As a crop consultant, you receive a soil test from one of your customer; interpret what the grower should do in terms of fertilization. You decide to send the same soil to a different lab and get similar nutrient concentration values but a different input recommendation why?

All multiple choice questions count, but only a subset of the other two sections: if there are 7 questions, you have to answer all 7 but only the 5-6 best will count towards your final grade.

General soil science

- Soil formation state factors: parent material, climate, topography, organisms, time
- Soil classification: 12 orders of US classification + know other classifications exist
- Basic soil mineralogy
 - Physical and biogeochemical weathering and how it affects other soil properties
 - Primary vs. secondary minerals, 2:1 vs. 1:1 clays, crystalline vs. amorphous mineral + how it affects other properties (e.g., CEC)
- Soil textural classes
 - Understand how to read a texture triangle + how texture affects other soil properties
- Soil pH
 - What is pH, active vs. potential acidity, H⁺ vs. Al³⁺
 - Why is a low or high pH bad for plants
 - Effects on other soil properties: nutrient availability, CEC, microbial activity
- Difference between saline, sodic and saline-sodic soils

- CEC
 - What is CEC, how it compares to AEC, what is base saturation
 - What are the main drivers of CEC, and which ones are pH-dependent
- SOM
 - What is soil organic matter + benefits on soil physics, water, biology and fertility
 - Consists of diverse molecules + these mineralize at a variable rate
 - Understand how SOM is related to soil aggregates
 - Understand how SOM is related to the C cycle + difference between SOM and SOC
- Soil water/physics
 - What is the difference between porosity, water-filled pore space, bulk density;
 - What is water-holding capacity, field capacity, permanent wilting point;
 - What is plant-available water, how it's determined, how it varies based on soil textural classes;
 - What are the differences among infiltration, runoff, percolation, leaching, and erosion
 - What is the difference between volumetric and gravimetric soil water
- Soil biology
 - Mycorrhizal fungi: role in crop nutrition + which group(s) doesn't form this symbiosis
 - Bacteria and archaea + rhizobium for legumes
 - Earthworms

Soil fertility

- N cycle in detail
 - Species: organic N (pool of multiple forms), NH4⁺, NO3⁻, N2O, NH3, N2
 - Processes: mineralization, nitrification, denitrification, volatilization, fixation, leaching
 - What controls the importance of each in different soils and agroecosystems
- P cycle in detail
 - No major gas species for P (unlike N) + only one dominant anion, PO_4^{3-}
 - Major pools in soils: P bound to calcium, Al/Fe oxides, or organic matter
 - What controls the importance of each pool in different soils and agroecosystems
- K cycle in detail
 - Minor role of soil organic matter and biology
 - Can be conceptualized as different pools: exchangeable, non-exchangeable, primary mineral
 - K and NH₄⁺ compete for fixation on interlayer of 2:1 clays; not the same as legume N fixation
- Some idea of other cycles
 - S: similar to N, driven by organic matter mineralization
 - Ca and Mg: similar to K but no fixation on interlayer of 2:1 clays, lime inputs important
 - Micronutrient cycles: similar cycle depends on element, know how Mo and B are special
- The importance of temperature and moisture on nutrient cycling
 - Biological cycling: mineralization, nitrification, denitrification

- Diffusion in soils (important for P availability) + NH₃ volatilization (along with pH)
- How to read a N-P-K rating on a fertilizer bag
 - N is N, P is labeled as P_2O_5 , K is labeled as K_2O
 - It is a minimum certified analysis: could be higher in reality, especially for organic ones
 - How to use them to compute input rates: 18-0-0 applied at 100 kg ha⁻¹ will add 100 kg fertilizer ha⁻¹ x 18 kg N kg⁻¹ fertilizer = 18 kg N ha⁻¹. And the reverse as well (e.g., how much of a 34-10-0 fertilizer needed to get 100 kg N ha⁻¹, and much P you will add)
- What are the main fertilizer additives and how they improve nutrient-use efficiency
 - Urease and nitrification inhibitors for N fertilizers
 - Slow-release and controlled-release, mostly for N but also for other nutrients
 - Chelates for micronutrients
- How to compute the following
 - A nutrient removal rate from a crop: yield (dry matter) x nutrient concentration
 - Given a N mass ploughed into the soil from a residue and a given transfer coefficient, compute how much N will be transferred to the following crop and resulting N savings
 - Given a N credit provided by a given soil N concentration, compute a fertilizer reduction
- Issues related to use of organic amendments
 - How to estimate N mineralization from a table/graph and apply a correction factor to inputs
 - How to use a N:P ratio to determine the N and P balance between inputs and outputs
 - Given a specific input rate (e.g., determined for N), compute how much C, salts, etc. get added
 - Strengths/weaknesses of organic amendments: high C and H₂O, salts, contaminants, coliforms
 - Difference between manure, compost, and biosolid + how composting affects C and nutrients
- Key steps in soil testing
 - Differences between grid sampling and using homogeneous areas + depth, frequency, time
 - Different soil extractions used in different conditions and measure indicators of nutrient availability to crops (but none truly measures "plant-available nutrients")
 - Soil labs express results as fertility classes (very low, low, medium, high, very high) and typically use these classes for recommendations vs. the actual nutrient concentration
 - Different labs get different concentrations via extract used, preparation (sieving, drying), etc.
 - Labs convert from concentration to lb ac⁻¹ but that's typically not right know why
 - Fertilization recommendation vary among labs based on nutrient management strategies: buildup and maintain, sufficiency of plant-available nutrients, basic cation ratios
 - Other tools beside soil testing: tissue testing, sap testing, SPAD meters, remote sensing
- Managing soil acidity and alkalinity
 - Calcitic vs. dolomitic lime, Ca not neutralizing in lime, calcium carbonate equivalents
 - Acidifying fertilizers most effective for alkaline soils (e.g., elemental S, NH4⁺ containing)
- What is soil quality/health
 - What are the key indicators (e.g., SOM)
 - How it differs from soil fertility but is key to long-term fertility
 - How it relates to different practices tillage, organic amendments, cover cropping, etc.